

Mopar ATF Plus 4 (ATF +4®)

Mopar(FCA US LLC Service & Customer Care Division)

Version No: 9.13

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **06/21/2024** Print Date: **12/13/2024** S.GHS.USA.EN

SECTION 1 Identification

Product name	Mopar ATF Plus 4 (ATF +4®)
Chemical Name	Not Applicable
Synonyms	68218058AA, 68218058AB, 68218058AC, 68218058CA, 68218058CB, 68218058CC, 68218054AA, 68218054AB, 68218054CA, 68218054CB, 68218057AA, 68218057AB, 68218057CA, 68218056AB, 68218056AB, 68218059AA, 68218059AB, 68102000AA, 68102000CA, 68044406PA, 68044406PB, 68233492AA, 68233493AA, 68218056AD, 68218057AC, 68218057CC, 0VU02152, 68633176AA, 68633177AA, 68218059AC, 68641180AA, 68641181AA
Chemical formula	Not Applicable
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Relevant identified uses

Use according to manufacturer's directions.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Mopar(FCA US LLC Service & Customer Care Division)	Mopar (FCA US LLC Service & Customer Care Division)
Address	26311 Lawrence Avenue, Center Line Michigan 48015 United States	26311 Lawerence Avenue, Center Line Michigan 48015 United States
Telephone	1-800-846-6727	1-800-846-6727
Fax	Not Available	Not Available
Website	Not Available	Not Available
Email	moparsds@fcagroup.com	moparsds@fcagroup.com

Emergency phone number

Association / Organisation	CHEMTREC	CHEMTREC
Emergency telephone number(s)	+1 703-741-5970	+1 703-741-5970
Other emergency telephone number(s)	248-512-8002	248-512-8002

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification Hazardous to the Aquatic Environment Long-Term Hazard Category 3

Label elements

Hazard pictogram(s)

Not Applicable

Signal word

Not Applicable

Version No: 9.13 Page 2 of 14 Issue Date: 06/21/2024
Print Date: 12/13/2024

Mopar ATF Plus 4 (ATF +4®)

H412 Harmful to aquatic life with long lasting effects.

Hazard(s) not otherwise classified

Prolonged or repeated skin contact without proper cleaning can clog the pores of the skin resulting in disorders such as oil acne/folliculitis. Used oil may contain harmful impurities. Not classified as flammable but will burn. The classification of this material is based on OSHA HCS 2012 criteria.

Precautionary statement(s) Prevention

P273

Avoid release to the environment.

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	% [weight]	Name
Not Available	0-90	Interchangeable low viscosity base oil (<20,5 cSt @40°C) *contains one or more of the following CAS-numbers: 64742-53-6, 64742-54-7, 64742-55-8, 64742-56-9, 64742-65-0, 68037-01-4, 72623-86-0, 72623-87-1, 8042-47-5, 848301-69-9, 68649-12-7, 151006-60-9, 163149-28-8, 64741-88-4, 64741-89-5.
75975-85-8	0.1-0.9	<u>Calciumalkaryl sulphonate</u>
67124-09-8	0.1-0.9	Substituted hydrocarbyl sulphide
84819-41-0	0.1-0.9	Borated ester
61791-44-4	0.01- 0.09	Ethoxylated amine

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 First-aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: If mediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically.

For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary

Version No: 9.13 Page 3 of 14 Issue Date: 06/21/2024

Print Date: 12/13/2024 Mopar ATF Plus 4 (ATF +4®)

disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.

- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.
- Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product.
- In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases.
 High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.

NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

SECTION 5 Fire-fighting measures

Extinguishing media

- Foam
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Special protective equipment and precautions for fire-fighters

Special protective equipment and precadulons for ine-righters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 		
Fire/Explosion Hazard	 ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. 		

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Slippery when spilt. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Slippery when spilt. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Version No: 9.13 Page 4 of 14 Issue Date: 06/21/2024 Print Date: 12/13/2024

Mopar ATF Plus 4 (ATF +4®)

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- · Electrostatic discharge may be generated during pumping this may result in fire.
- · Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- · Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec)
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Wait 2 minutes after tank filling (for tanks such as those on
- road tanker vehicles) before opening hatches or manholes.
- Wait 30 minutes after tank filling (for large storage tanks)
- before opening hatches or manholes. Even with prope
- grounding and bonding, this material can still accumulate an
- electrostatic charge. If sufficient charge is allowed to
- accumulate, electrostatic discharge and ignition of flammable
- air-vapour mixtures can occur. Be aware of handling
- operations that may give rise to additional hazards that result
- from the accumulation of static charges. These include but are
- not limited to pumping (especially turbulent flow), mixing,
- filtering, splash filling, cleaning and filling of tanks and
- containers, sampling, switch loading, gauging, vacuum truck
- operations, and mechanical movements. These activities may
- lead to static discharge e.g. spark formation. Restrict line
- velocity during pumping in order to avoid generation of
- electrostatic discharge (= 1 m/s until fill pipe submerged to twice its diameter, then = 7 m/s). Avoid splash filling.
- Do NOT use compressed air for filling, discharging, or handling operations
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use
- Avoid physical damage to containers
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

Safe handling

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
 Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Metal can or drum
- Packaging as recommended by manufacturer
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire

Oil leaks in a pressurized circuit may result in a fine flammable spray (the lower flammability limit for oil mist is reached for a concentration of about 45 g/m3

Autoignition temperatures may be significantly lower under particular conditions (slow oxidation on finely divided materials..

Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
Mopar ATF Plus 4 (ATF +4®)	Not Available	Not Available Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
			Not Available	
Calciumalkaryl sulphonate	Not Available		Not Available	
Substituted hydrocarbyl sulphide	Not Available		Not Available	
Borated ester	Not Available		Not Available	
Ethoxylated amine	Not Available		Not Available	

Version No: 9.13 Page 5 of 14 Issue Date: 06/21/2024
Print Date: 12/13/2024

Mopar ATF Plus 4 (ATF +4®)

Miopai ATF Flus 4 (ATF +40)

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
Substituted hydrocarbyl sulphide	D	> 0.1 to ≤ 1 ppm
Ethoxylated amine	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

71	
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50- 100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Type of Contaminant:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eve and face protection

- ► Safety glasses with side shields
- ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Hands/feet protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use

Air Speed:

Version No: 9.13 Page 6 of 14 Issue Date: 06/21/2024

Mopar ATF Plus 4 (ATF +4®)

Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: · Excellent when breakthrough time > 480 min Good when breakthrough time > 20 min · Fair when breakthrough time < 20 min · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended See Other protection below Body protection Overalls P.V.C apron. Other protection Barrier cream.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer*generated selection:

Skin cleansing cream. Eye wash unit

Mopar ATF Plus 4 (ATF +4®)

Material	CPI
PE/EVAL/PE	A
PVA	A
TEFLON	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
VITON	С
VITON/NEOPRENE	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Print Date: 12/13/2024

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			Airline**

- * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Red		
Physical state	Liquid	Relative density (Water = 1)	0.851
Odour	Slight hydrocarbon	Partition coefficient n-octanol / water	>6
Odour threshold	Not Available	Auto-ignition temperature (°C)	>320
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available

Mopar ATF Plus 4 (ATF +4®)

Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	35.13 @ 40°C 7.71 @ 100°C
Initial boiling point and boiling range (°C)	>280	Molecular weight (g/mol)	Not Available
Flash point (°C)	184	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	<0.0005	Gas group	Not Available
Solubility in water	Negligible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	>1	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information	on toxicological	effects
-------------	------------------	---------

Inhaled

Ingestion

Skin Contact

Eye

Chronic

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation hazard is increased at higher temperatures.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Inhalation of oil droplets or aerosols may cause discomfort and may produce chemical inflammation of the lungs.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result.

Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives.

The material may accentuate any pre-existing dermatitis condition

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.

There is ample evidence to presume that exposure to this material can cause genetic defects that can be inherited. Based on experiments and other information, there is ample evidence to presume that exposure to this material can cause genetic defects

Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

Mopar ATF Plus 4 (ATF +4®)	TOXICITY	IRRITATION
	Not Available	Not Available

Version No: 9.13 Page 8 of 14 Issue Date: 06/21/2024 Print Date: 12/13/2024

Mopar ATF Plus 4 (ATF +4®)

0.1.1	TOXICITY	IRRITATION	
alciumalkaryl sulphonate	Not Available	Not Available	
	TOXICITY	IRRITATION	
Substituted hydrocarbyl sulphide	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Not Available	
Sulphide	Oral (Rat) LD50: >5000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
Borated ester	Not Available	Not Available	
	тохісіту	IRRITATION	
Ethoxylated amine	Not Available	Not Available	

Legend:

 Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise Value obtained from Europe ECHA Registered Substances specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of nparaffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives;

The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- The adverse effects of these materials are associated with undesirable components, and
- The levels of the undesirable components are inversely related to the degree of processing;
- Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- The potential toxicity of residual base oils is independent of the degree of processing the oil receives.
- The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Mopar ATF Plus 4 (ATF +4®)

Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential cancer-causing and mutation-causing activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Testing of residual oils for mutation-causing and cancer-causing potential has shown negative results, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing For highly and severely refined distillate base oils:

In animal studies, the acute, oral, semilethal dose is >5g/kg body weight and the semilethal dose by skin contact is >2g/kg body weight. The semilethal concentration for inhalation is 2.18 to >4 mg/L. The materials have varied from "non-irritating" to "moderately irritating" when tested for skin and eye irritation. Testing for sensitisation has been negative. The effects of repeated exposure vary by species; in animals, effects to the testes and lung have been observed, as well as the formation of granulomas. In animals, these substances have not been found to cause reproductive toxicity or significant increases in birth defects. They are also not considered to cause cancer, mutations or chromosome aberrations.

Ethoxylated amine

Alkyl amine polyalkoxylates are not acutely toxic by the oral and dermal routes of exposure, or via inhalation under normal use conditions. Concentrated materials are generally corrosive, eye and skin irritants and may be dermal sensitizers. There is no evidence that alkyl amine polyalkoxylates are neurotoxic, mutagenic, or clastogenic.

Surfactants are surface-active materials that can damage the structural integrity of cellular membranes at high dose levels. Thus, surfactants are often corrosive and irritating in concentrated solutions, as indicated by the acute toxicity studies for these inert materials. It is possible that some of the observed toxicity seen in the repeated studies, such as diarrhea or decreased body weight gain, can be attributed to the corrosive and irritating nature of these surfactants.

Generally, lower molecular weight AAPs (lower carbon chain units and less alkoxylation) may potentially be more bioavailable because they may be more easily absorbed and distributed than higher molecular weight compounds. Thus overall, the longer chain carbon amine higher polyalkoxylates should be less bioavailable

There are no dermal absorption data on the AAPs. However, data on functionally and structurally similar surfactants suggest that dermal absorption of the AAPs is likely to be low.

Following subchronic exposure to rats, some gastrointestinal irritation was observed, but no specific target organ toxicity or neurotoxicity was seen. In subchronic studies in rats and/or dogs, the most sensitive effects noted were increased mortality, clinical signs (salivation, wheezing, emesis, and/or soft faeces), cataracts, cellular changes in the stomach, and liver effects characterized by enzyme induction, and pigment accumulation in Kupffer cells and bile canaliculi. There was no increased susceptibility to the offspring of rats following in utero exposure in two prenatal developmental toxicity studies. However, there is evidence of increased susceptibility in a reproductive screening

In rat developmental studies, no adverse fetal effects were seen, even at maternally toxic doses. No effects were observed on estrous cyclicity, spermatogenic endpoints, or testosterone and thyroid levels in a two-generation rat reproduction study. However, reproductive and offspring toxicity were noted for AAPs based on litter loss, increase mean number of unaccounted-for implantation sites and decreased mean number of pups born, live litter size and postnatal survival from birth to LD 4.

Very little metabolism information is available for the alkyl amine polyalkoxylates. However, it is possible to predict mammalian metabolism based on studies for the alkyl alcohol alkoxylates, which are another class of surfactants. It has been proposed that the primary metabolic pathway involves the excretion of the polyalkoxylate moiety and conversion of the alkyl amine group to a fatty acid that is then converted via oxidative degradation to carbon dioxide and water. In general, the gastrointestinal absorption of AAPs with relatively short alkoxylate chain lengths is expected to be rapid and extensive, while less absorption is likely for the more extensively polyalkoxylated AAPs with larger molecular weights.

No structural alerts for potential carcinogenicity of both a representative alkyl amine polyalkoxylate, as well as a possible metabolite/degradate of alkyl amine polyalkoxylate that had been extensively dealkylated, with the amine group intact have been identified Alkyl amine polyalkoxylates are not expected to be carcinogenic. Therefore a cancer dietary exposure assessment is not necessary to assess cancer risk.

The US EPA has not found alkyl amine polyalkoxylates to share a common mechanism of toxicity with any other substances, and alkyl amine polyalkoxylates do not appear to produce a toxic metabolite produced by other substances. For the purposes of this tolerance action, therefore, EPA has assumed that alkyl amine polyalkoxylates do not have a common mechanism of toxicity with other substances Alkyl Amine Polyalkoxylates (JITF CST 4 Inert Ingredients). Human Health Risk Assessment to Support Proposed Exemption from the Requirement of a Tolerance When Used as Inert Ingredients in Pesticide Formulations. June 2009 https://beta.regulations.gov/document/EPA-HQ-OPP-2008-0738-0005

Version No: 9.13 Page 9 of 14 Issue Date: 06/21/2024

Mopar ATF Plus 4 (ATF +4®)

Print Date: 12/13/2024

FND ether amines and FND amines are very similar in structure (length of chain or degree of saturation), function and toxicity. Acute exposure to FND ether amines by oral, dermal and inhalation may produce moderate to slight toxicity but repeated skin contact can be highly irritating. However, exposure did not produce any organ-specific toxicity, genetic, reproductive or developmental defect same as in FND amines

No significant acute toxicological data identified in literature search.

Polyethers (such as ethoxylated surfactants and polyethylene glycols) are highly susceptible to being oxidized in the air. They then form complex mixtures of oxidation products.

Animal testing reveals that whole the pure, non-oxidised surfactant is non-sensitizing, many of the oxidation products are sensitisers. The oxidization products also cause irritation.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Tallow derivatives used in the manufacture of cosmetic products are safe for consumption when it undergoes- transesterification or hydrolysis at 200 C, under pressure for 20 minutes (for glycerol, fatty acids and esters); saponification with 12 M of NaOH (for glycerol and soap) at 95 C for 3 hours; continuous process at 140 C, for about 8 minutes or its equivalent.

Overexposure to most of these materials may cause adverse health effects.

Many amine-based compounds can cause release of histamines, which, in turn, can trigger allergic and other physiological effects, including constriction of the bronchi or asthma and inflammation of the cavity of the nose. Whole-body symptoms include headache, nausea faintness, anxiety, a decrease in blood pressure, rapid heartbeat, itching, reddening of the skin, urticaria (hives) and swelling of the face, which are usually transient.

There are generally four routes of possible or potential exposure: inhalation, skin contact, eye contact, and swallowing.

Inhalation: Inhaling vapours may result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Higher concentrations of certain amines can produce severe respiratory irritation, characterized by discharge from the nose, coughing, difficulty in breathing and chest pain. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, inflammation of the bronchi and lungs, and possible lung damage. Repeated and/or prolonged exposure to some amines may result in liver disorders, iaundice and liver enlargement. Some amines have been shown to cause kidney, blood and central nervous system disorders in animal studies

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and my experience distress while breathing, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapours. Once sensitized, these individuals must avoid any further exposure to amines. Chronic overexposure may lead to permanent lung injury, including reduction in lung function, breathlessness, chronic inflammation of the bronchi, and immunologic lung disease. Products with higher vapour pressures may reach higher concentrations in the air, and this increases the likelihood of worker exposure. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists or heated vapours. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis and emphysema.

Skin contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury, from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative skin inflammation. Skin contact with some amines may result in allergic sensitization. Sensitised persons should avoid all contact with amine catalysts. Whole-body effects resulting from the absorption of the amines though skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually temporary.

Eye contact: Amine catalysts are alkaline and their vapours are irritating to the eyes, even at low concentrations. Direct contact with liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. Contact with solid products may result in mechanical irritation, pain and corneal injury.

Exposed persons may experience excessive tearing, burning, inflammation of the conjunctiva, and swelling of the cornea, which manifests as a blurred or foggy vision with a blue tint, and sometimes a halo phenomenon around lights. These symptoms are temporary and usually disappear when exposure ends. Some people may experience this effect even when exposed to concentrations that do not cause

Ingestion: Amine catalysts have moderate to severe toxicity if swallowed. Some amines can cause severe irritation, ulcers and burns of the mouth, throat, gullet and gastrointestinal tract. Material aspirated due to vomiting can damage the bronchial tubes and the lungs. Affected people may also experience pain in the chest or abdomen, nausea, bleeding of the throat and gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, collapse of circulation, coma and even death.

Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

Mopar ATF Plus 4 (ATF +4®)	Endpoint Not Available	Test Duration (hr) Not Available	Species Not Available	Value Not Available	Source Not Available
Calciumalkaryl sulphonate	Endpoint Not Available	Test Duration (hr) Not Available	Species Not Available	Value Not Available	Source Not Available

Version No: 9.13 Page 10 of 14 Issue Date: 06/21/2024
Print Date: 12/13/2024

Mopar ATF Plus 4 (ATF +4®)

Endpoint Test Duration (hr) Species Value Source Substituted hydrocarbyl Not Not Not sulphide Not Available Not Available Available Available Available Species **Endpoint** Test Duration (hr) Value Source Borated ester Not Not Not Not Available Not Available Available Available Available **Endpoint** Test Duration (hr) Species Value Source Ethoxylated amine Not Not Not Available Not Available Available Available Available Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Legend: Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8, Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L. was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

Mopar ATF Plus 4 (ATF +4®)

Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.)

For Hydrocarbons: log Kow 1. BCF~10.

For Aromatics: log Kow 2-3.

BCF 20-200. For C5 and greater alkanes: log Kow 3-4.5. BCF 100-1,500.

For Alkanes, Benzene, Toluene, Ethylbenzene, Xylene (BTEX): Environmental Fate: Microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Some hydrocarbons will become associated with marine sediments likely to be spread over a fairly wide area of sea floor. Under aerobic conditions, hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes, they produce water, methane and carbon dioxide. Anaerobic degradation is slower than aerobic. Biodegradation can eliminate the contaminants without dispersing them throughout the environment. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Hydrocarbons with condensed ring structures, such as PAHs (polycyclic aromatic hydrocarbons) with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation. Straight chain hydrocarbons and aromatics degrade more readily than highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilization and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialized hydrocarbon degraders; n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs Atmospheric Fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkenes, cycloalkenes, and substituted benzenes have half-lives of 1 day or less. Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkenes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis.

Aquatic Fate: Volatilization half-life predicted as 7 days (ponds), 1.5 days (rivers), 6 days (lakes). Volatilization rate of naphthalene and its substituted derivatives estimated to be slower. The lower molecular weight hydrocarbons are expected to form a "slick" on the surface of waters after release in calm seas which is expected to evaporate and enter the atmosphere where it will be degraded through reaction with hydroxy radicals. Ecotoxicity: Effects on freshwater/saltwater organisms: Hydrocarbons are hydrophobic. Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. Toxic effects are often observed in species such as blue mussel, water fleas, freshwater green algae, marine copepods and amphipods.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
	No Data available for all ingredients	No Data available for all ingredients	

Bioaccumulative potential

Ingredient	Bioaccumulation
Substituted hydrocarbyl sulphide	HIGH (LogKOW = 5.65)

Mobility in soil

Ingredient	Mobility	
	No Data available for all ingredients	

Other adverse effects

One or more ingredients within this SDS has the potential of causing ozone depletion and/or photochemical ozone creation.

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Version No: 9.13 Page 12 of 14 Issue Date: 06/21/2024 Print Date: 12/13/2024

Mopar ATF Plus 4 (ATF +4®)

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
Interchangeable low viscosity base oil (<20,5 cSt @40°C) *contains one or more of the following CAS-numbers: 64742-53-6, 64742-55-8, 64742-65-0, 68037-01-4, 72623-86-0, 72623-87-1, 8042-47-5, 488301-69-9, 68649-12-7, 151006-60-9, 163149-28-8, 64741-88-4, 64741-89-5.	Not Available
Calciumalkaryl sulphonate	Not Available
Substituted hydrocarbyl sulphide	Not Available
Borated ester	Not Available
Ethoxylated amine	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type	
Interchangeable low viscosity base oil (<20,5 cSt @40°C) *contains one or more of the following CAS-numbers: 64742-53-6, 64742-55-4, 64742-55-8, 64742-56-9, 64742-65-0, 68037-01-4, 72623-86-0, 72623-87-1, 8042-47-5, 848301-69-9, 68649-12-7, 151006-60-9, 163149-28-8, 64741-88-4, 64741-89-5.	Not Available	
Calciumalkaryl sulphonate	Not Available	
Substituted hydrocarbyl sulphide	Not Available	
Borated ester	Not Available	
Ethoxylated amine	Not Available	

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

Calciumalkaryl sulphonate is found on the following regulatory lists

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Substituted hydrocarbyl sulphide is found on the following regulatory lists

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Borated ester is found on the following regulatory lists

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Ethoxylated amine is found on the following regulatory lists

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Additional Regulatory Information

Not Applicable

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

1	
Flammable (Gases, Aerosols, Liquids, or Solids)	
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	
Organic Peroxide	No
Self-reactive	No

Version No: 9.13 Page 13 of 14 Issue Date: 06/21/2024

Mopar ATF Plus 4 (ATF +4®)

No In contact with water emits flammable gas Combustible Dust No Carcinogenicity Acute toxicity (any route of exposure) Reproductive toxicity No Skin Corrosion or Irritation No Respiratory or Skin Sensitization No Serious eye damage or eye irritation No Specific target organ toxicity (single or repeated exposure) No Aspiration Hazard No Germ cell mutagenicity No Simple Asphyxiant No Hazards Not Otherwise Classified Yes

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

None Reported

US. EPCRA Section 313 Toxic Release Inventory (TRI) (40 CFR 372)

None Reported

Additional Federal Regulatory Information

Not Applicable

State Regulations

US. California Proposition 65

MARNING: This product can expose you to chemicals including aniline, alpha-naphthylamine, which are known to the State of California to cause cancer. For more information, go to www.P65Warnings.ca.gov

Additional State Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non- Industrial Use	No (Calciumalkaryl sulphonate; Borated ester)		
Canada - DSL	No (Borated ester)		
Canada - NDSL	No (Interchangeable low viscosity base oil (<20,5 cSt @40°C) *contains one or more of the following CAS-numbers: 64742-53-6, 64742-54-7, 64742-55-8, 64742-56-9, 64742-65-0, 68037-01-4, 72623-86-0, 72623-87-1, 8042-47-5, 848301-69-9, 68649-12-7, 151006-60-9, 163149 28-8, 64741-88-4, 64741-89-5.; Calciumalkaryl sulphonate; Substituted hydrocarbyl sulphide; Ethoxylated amine)		
China - IECSC	No (Borated ester)		
Europe - EINEC / ELINCS / NLP	No (Calciumalkaryl sulphonate)		
Japan - ENCS	No (Calciumalkaryl sulphonate; Substituted hydrocarbyl sulphide; Borated ester)		
Korea - KECI	No (Borated ester)		
New Zealand - NZIoC	No (Borated ester)		
Philippines - PICCS	No (Borated ester)		
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'		
Taiwan - TCSI	No (Borated ester)		
Mexico - INSQ	No (Interchangeable low viscosity base oil (<20,5 cSt @40°C) *contains one or more of the following CAS-numbers: 64742-53-6, 64742-7, 64742-55-8, 64742-56-9, 64742-65-0, 68037-01-4, 72623-86-0, 72623-87-1, 8042-47-5, 848301-69-9, 68649-12-7, 151006-60-9, 163 28-8, 64741-88-4, 64741-89-5.; Calciumalkaryl sulphonate; Substituted hydrocarbyl sulphide; Borated ester; Ethoxylated amine)		
Vietnam - NCI	No (Borated ester)		
Russia - FBEPH	No (Calciumalkaryl sulphonate; Substituted hydrocarbyl sulphide; Borated ester; Ethoxylated amine)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	06/21/2024
Initial Date	04/20/2018

SDS Version Summary

Version	Date of Update	Sections Updated
8.13	06/21/2024	Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Toxicological information - Chronic Health, Ecological Information - Environmental, Exposure controls / personal protection - Exposure Standard, Firefighting measures - Fire Fighter (fire/explosion hazard), Composition / information on ingredients - Ingredients, Accidental release measures - Spills (major), Handling and storage - Storage (storage incompatibility), Identification of the substance / mixture and of the company / undertaking - Synonyms

Other information

Print Date: 12/13/2024

Version No: **9.13** Page **14** of **14** Issue Date: **06/21/2024**

Mopar ATF Plus 4 (ATF +4®)

Print Date: 12/13/2024

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AllC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ► ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- ▶ NCI: National Chemical Inventory
- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.